A Cyclic Weighted Median Method for L1 Low-Rank Matrix Factorization with Missing Entries

نویسندگان

  • Deyu Meng
  • Zongben Xu
  • Lei Zhang
  • Ji Zhao
چکیده

A challenging problem in machine learning, information retrieval and computer vision research is how to recover a low-rank representation of the given data in the presence of outliers and missing entries. The L1-norm low-rank matrix factorization (LRMF) has been a popular approach to solving this problem. However, L1-norm LRMF is difficult to achieve due to its non-convexity and non-smoothness, and existing methods are often inefficient and fail to converge to a desired solution. In this paper we propose a novel cyclic weighted median (CWM) method, which is intrinsically a coordinate decent algorithm, for L1-norm LRMF. The CWM method minimizes the objective by solving a sequence of scalar minimization sub-problems, each of which is convex and can be easily solved by the weighted median filter. The extensive experimental results validate that the CWM method outperforms state-of-the-arts in terms of both accuracy and computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization

Completing a matrix from a small subset of its entries, i.e., matrix completion, is a challenging problem arising from many real-world applications, such as machine learning and computer vision. One popular approach to solving the matrix completion problem is based on low-rank decomposition/factorization. Low-rank matrix decomposition-based methods often require a pre-specified rank, which is d...

متن کامل

PowerFactorization : 3D reconstruction with missing or uncertain data

Many problems in computer vision may be considered as low-rank approximation problems, in which a matrix of measured data must be approximated by a matrix of given low rank. If the matrix has no missing entries, then this is easily accomplished by a Singular Value Decomposition (SVD). If some measurements are missing however, and the matrix has holes, then the SVD method can not be applied. We ...

متن کامل

Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm

The calculation of a low-rank approximation of a matrix is a fundamental operation in many computer vision applications. The workhorse of this class of problems has long been the Singular Value Decomposition. However, in the presence of missing data and outliers this method is not applicable, and unfortunately, this is often the case in practice. In this paper we present a method for calculatin...

متن کامل

A Coordinate Descent Method for Robust Matrix Factorization and Applications

Matrix factorization methods are widely used for extracting latent factors for low rank matrix completion and rating prediction problems arising in recommender systems of on-line retailers. Most of the existing models are based on L2 fidelity (quadratic functions of factorization error). In this work, a coordinate descent (CD) method is developed for matrix factorization under L1 fidelity so th...

متن کامل

Robust Weighted Low-Rank Matrix Approximation

The calculation of a low-rank approximation to a matrix is fundamental to many algorithms in computer vision and other fields. One of the primary tools used for calculating such low-rank approximations is the Singular Value Decomposition, but this method is not applicable in the case where there are outliers or missing elements in the data. Unfortunately this is often the case in practice. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013